Roles of Plasmoid Instability in Magnetic Reconnection and Magnetohydrodynamic Turbulence

Yi-Min Huang

In collaboration with: Amitava Bhattacharjee, Luca Comisso, Chuanfei Dong, Liang Wang, Lijia Guo, Davina Innes, Pardeep Chitta, Hardi Peter, and Peter Young

Department of Astrophysical Sciences, Princeton University

PPPL Research & Review Seminar, May 24, 2019

Outline of Today's Talk

- Plasmoid instability in evolving current sheet and current sheet disruption
 - Results from direct numerical simulations
 - Scalings of the current sheet width, linear growth rate, and dominant wavenumber at disruption
 - A phenomenological model and analytic scalings in the high-S regime
- Plasmoid-mediated current sheet disruption & MHD turbulence
- Evidence of plasmoid instability in solar observation
- Future perspectives

Plasmoid Instability Brings New Perspectives to Reconnection

- The reconnection current sheet is unstable to secondary tearing instability at high S, leading to current sheet fragmentation and formation of plasmoids
- Reconnection is fast even in resistive MHD, with reconnection rate $\sim 0.01 V_A B$, nearly independent of S. (Bhattacharjee et al. 2009; Cassak et al. 2009; Huang & Bhattacharjee 2010)
- Even faster collisionless/Hall reconnection can be triggered if the secondary current sheets become small than ion skin depth d_i or Lamor radius ρ_i . (Daughton et al. 2009, Shepherd & Cassak 2010, Huang et al. 2011)

Plasmoids in Nature and Laboratories

Guo et al. APJL (2013)

Ebrahimi & Raman 2015, 2016

Jara-Almonte et al. PRL 2016

Plasmoid Instability in Evolving Current Sheet

- The linear growth rate in a Sweet-Parker current sheet $\gamma_{max}\tau_A \sim S^{1/4}$, which diverges as $S \to \infty$.
- Because a Sweet-Parker sheet must be realized dynamically over time, the current sheet will break apart before it reaches the Sweet-Parker width for a high-S system. (Pucci & Velli 2014)
- Plasmoid instability & current sheet disruption must be studied in the context of an evolving current sheet.
 - Tenerani et al. (2015), Uzdensky & Loureiro (2016), Comisso et al. (2016, 2017), Huang et al. (2017), etc.
- Key Questions When will the current sheet be disrupted?
 How do current sheet width, growth rate, dominant wavenumber at disruption scale with S and other parameters?

Tearing Instability in Thinning Current Sheet

Harris sheet profile $\mathbf{B} = B_0 \tanh(x/a)\hat{\mathbf{y}}$

$$\gamma \tau_a \sim \left\{ \begin{array}{cc} S_a^{-3/5} (ka)^{-2/5} (1 - k^2 a^2)^{4/5}, & ka \gg S_a^{-1/4} \\ S_a^{-1/3} (ka)^{2/3}, & ka \ll S_a^{-1/4} \end{array} \right.$$

Coppi et al. 1976

- Here the Lundquist number $S_a = aV_A/\eta$ and the Alfvén time scale $\tau_a = a/V_A$ are defined with the current sheet **thickness** a.
- As a(t) decreases in time, the growth rate γ increases and more modes become unstable.

Condition For Disruption

• Inner layer half-width

$$\delta = \left(\frac{\gamma}{V_A/a} \frac{1}{(ka)^2 S_a}\right)^{1/4} a$$

Island half-width

$$w=2\sqrt{\frac{a\tilde{B}}{kB_x}}.$$

• Tearing instability becomes nonlinear when $w = \delta$. At this time $\tilde{J} \sim J$ and the current sheet is "disrupted".

Estimating Island Size with Superposition of Modes

$$\tilde{B} = \left(\frac{1}{\pi L} \int_{k_d/\xi}^{k_d \xi} |\hat{B}_z(k')|^2 dk'\right)^{1/2}$$

$$w = 2\sqrt{\frac{a\tilde{B}}{k_d B_x}}.$$

Evolution of Fluctuations, S = 2.5e6

Real Space

Fourier Space

- Fluctuations are stretched along the *x* direction by the outflow jets: $dk/dt = -kv'_x$
- t_g : amplitude starts to grow; t_d : disruption; t_s : saturation

Time History of Growth Rate and Reconnection Rate

- The "total" perturbation amplitude $||\tilde{B}_z|| \equiv \left(\int_{-L}^L \tilde{B}_z^2 dx\right)^{1/2}$ typically starts to grow when $\gamma \tau_A \simeq O(1)$, and $\gamma \tau_A \gg 1$ at the disruption
 - Onset of fast reconnection at $t = t_d$

Snapshots from Disruption to Saturation

Scalings from Simulations

A Phenomenological Model

Mode-stretching by outflow jets

$$\frac{dk}{dt} = -kv_x'$$

• Evolution of the fluctuation spectrum $f(k) \equiv |\hat{B}_z(k)|/B_0L_0$

$$\frac{df}{dt} = \partial_t f - k v_x' \partial_k f = \left(\gamma(k, a(t)) - \frac{v_x'}{2} + \frac{1}{2L} \frac{dL}{dt} \right) f.$$
Stretching Linear Growth Advection Loss Length Evol.

- Only consider the domain $k \ge \pi/L$.
- Disruption takes place when island size = inner layer width of the dominant mode

Solving the Model Eq. by Method of Characteristics

Assuming dL/dt = 0 and $v'_x = V_A/L$, along a characteristic $\hat{k} = \hat{k}_0 e^{-(\hat{t} - \hat{t}_0)}$,

$$f(\hat{k},\hat{t}) = f(\hat{k}_0,\hat{t}_0) \exp \left[\underbrace{\int_{\hat{t}_0}^{\hat{t}} \hat{\gamma} \left(\hat{k}(\hat{t}'), \hat{t}' \right) d\hat{t}'}_{\text{can be expressed in }_2F_1} - \frac{\hat{t} - \hat{t}_0}{2} \right].$$

Condition for Disruption

$$\hat{\delta} = \hat{w} \Longrightarrow \left(\frac{\hat{\gamma}_d}{(\hat{k}_d \hat{a}_d)^2 S}\right)^{1/4} \hat{a}_d = 2\sqrt{\frac{\hat{a}_d \tilde{B}}{\hat{k}_d B_0}}$$

$$ilde{B}^2=rac{B_0^2}{\pi}\int_{\hat{k}_d/\xi}^{\hat{k}_d\xi}f^2d\hat{k}\simeq ext{Gaussian Integral}$$

Analytic Scalings of Disruption Conditions

For $\hat{a} = \hat{a}_0 e^{-\hat{t}/\hat{\tau}}$, $f_0(\hat{k}_0) = \epsilon \hat{k}^{-\chi}$, the disruption width

$$\hat{a}_{d} = c_{a} \hat{\tau}_{\sharp}^{2/3} S^{-1/3} \left[-\frac{1}{\theta} W_{-1} (\Xi) \right]^{-2/3}$$

$$\simeq c_{a} \hat{\tau}_{\sharp}^{2/3} S^{-1/3} \left[\log \left(\epsilon^{-2} \hat{a}_{0}^{(2\chi+1)\hat{\tau}} \hat{\tau}_{\sharp}^{1/2-1/\theta} S^{(1/\theta-\chi-3)/2} \right) \right]^{-2/3},$$

where W_{-1} is the Lambert's W function, $\hat{\tau}_{\sharp} \equiv 5\hat{\tau}/(\hat{\tau}+5)$,

$$\Xi \equiv -\theta c_a^{3/2} \left(c_{\chi} \epsilon^{-2} \hat{a}_0^{(2\chi+1)\hat{\tau}} \right)^{-\theta} \hat{\tau}_{\sharp}^{1-\theta/2} S^{(\theta\chi+3\theta-1)/2},$$

$$\theta \equiv \frac{3}{(4\chi+2)\hat{\tau} + 5\chi + 2}.$$

Dominant wave number $\hat{k}_d = c_k S^{-1/4} \hat{a}_d^{-4/5}$, growth rate $\hat{\gamma}_d = c_\gamma S^{-1/2} \hat{a}_d^{-3/2}$.

Scalings from the Phenomenological Model

The Effect of v'_x Is More Significant In The Low-S Limit

- Calculations can be done with a system noise instead of an initial noise, or without the effects of v'_x .
- if $v_x' \to 0$, with a proper translation of notations $f_0(\hat{k})\hat{k}^{-1/2} \leftrightarrow \hat{w}_0(\hat{k})^2/4\hat{a}_0$, the analytical scalings from the model are identical to that of Comisso et al. (2016, 2017) up to the leading order logarithmic expansion.

Application: Plasmoid-Mediated Reconnection in Turbulence

Comisso, et al. ApJ 2018

- Above k_* , current sheet disruption by plasmoid instability is the main cascade mechanism
- Turbulence fluctuations at higher *k* provide the source of noise for current sheets at lower *k*

Plasmoids in 2D MHD Turbulence

Dong et al. PRL 2018

3D Plasmoid Instability ⇒ Self-Generated Turbulent Reconnection

Huang & Bhattacharjee, APJ 2016

Structure Functions in Turbulent Reconnection

- $k_{\perp}v_{l}/k_{\parallel}V_{A} \sim O(1) \Longrightarrow$ strongly nonlinear regime
- Eddy anisotropy is nearly scale-independent as opposed to $k_{\parallel} \sim k_{\parallel}^{2/3}$ predicted by Goldreich & Sridhar

IRIS Observation of UV Burst Event

Innes et al. APJ 2015

UV Burst Event Driven By Footpoint Motion

Chitta et al. A&A (2017)

Future Perspectives

- The theoretical framework can be applied to models beyond resistive MHD.
- Predictions from theories/simulations may be tested with new experiments, e.g. FLARE.
- Roles of the plasmoid instability in MHD turbulence
 - turbulent reconnection
 - reconnection in turbulence
- High resolution/cadence solar observations